

D8 SS Distillate

Sample ID: G2G0224-01 Matrix: Hemp Extracts & Test ID: 5021427 Source ID: Date Sampled: 07/20/22 Date Accepted: 07/20/22

Harvest/Prod. Date: 07/17/2022

	Results at a Glance
Total THC: <loq %<="" (0.1577%)="" th=""><th></th></loq>	
Total CBD : 0.1380 %	
delta 8-THC : 88.29 % PASS	
Pesticides : PASS	
Residual Solvent Analysis : PASS	
Mycotoxins : PASS	
METALS : PASS	
XXX (

Eric Wendt Chief Science Officer - 7/28/2022

D8 SS Distillate

Sample ID: G2G0224-01 Matrix: Hemp Extracts & Test ID: 5021427 Source ID: Date Sampled: 07/20/22 Date Accepted: 07/20/22

Harvest/Prod. Date: 07/17/2022

ate/Time Extra	cted: 07/21	/22 11:26		cy Analysis nalysis Method/SO	P: 215	Batch Identif	ication: 22300	35
Cannabinoids	LOQ (%)	% by Wt.	mg/g	× / /	Cannab	inoids Profile		
Total THC	0.1577	< LOQ	< LOQ					
Total CBD	0.0431	0.1380	1.38					
THCA	0.0005	< LOQ	< LOQ				₽ ₽₿7	
delta 9-THC	0.0005	< LOQ	< LOQ		-			
delta 8-THC	0.0934	88.29	882.9					
THCV	0.1052	< LOQ	< LOQ					
THCVA	0.0392	< LOQ	< LOQ	X				
CBD	0.0005	0.1380	1.38					
CBDA	0.0005	< LOQ	< LOQ					
CBDV	0.1040	< LOQ	< LOQ				delta 8-THC	88 ; 0
CBDVA	0.0341	< LOQ	< LOQ				CBN CBC	C C
CBN	0.0622	0.3053	3.053				Total:	89
CBG	0.0164	< LOQ	< LOQ	$\angle D$				
CBGA	0.0164	< LOQ	< LOQ	88.3	ζT			
CBC	0.0186	0.6782	6.782					
Total Canna	abinoids	89.41	894.1					

Total THC = delta 9-THC + (THCA * 0.877) Total CBD = CBD + (CBDA * 0.877) Total CBG = CBG + (CBGA * 0.878) LOQ=Limit of Quantification, the lowest measurable concentration of an analyte.

Eric Wendt

Chief Science Officer - 7/28/2022

Page 2 of 14

D8 SS Distillate

Sample ID: G2G0224-01 Matrix: Hemp Extracts & Test ID: 5021427 Source ID: Date Sampled: 07/20/22

Date Accepted: 07/20/22

Harvest/Prod. Date: 07/17/2022

Pesticide Analysis in ppm

Date/Time Extracted: 07/20/22 15:23 Analysis Method/SOP: 202

Analyte	Result	Action Level	LOD	LOQ	Units	Notes	Analyte	Result	Action Level	LOD	LOQ	Units	Notes
Abamectin	< LOQ	0.5	-	0.1	ppm	1	Acephate	< LOQ	0.4		0.1	ppm	1
Acequinocyl	< LOQ	2		0.5	ppm		Acetamiprid	< LOQ	0.2		0.1	ppm	
Aldicarb	< LOQ	0.4		0.1	ppm		Azoxystrobin	< LOQ	0.2		0.1	ppm	
Bifenazate	< LOQ	0.2		0.1	ppm		Bifenthrin	< LOQ	0.2		0.1	ppm	
Boscalid	< LOQ	0.4		0.1	ppm		Carbaryl	< LOQ	0.2		0.1	ppm	
Carbofuran	< LOQ	0.2		0.1	ppm		Chlorantraniliprole	< LOQ	0.2		0.1	ppm	
Chlorfenapyr	< LOQ	1		0.1	ppm		Chlorpyrifos	< LOQ	0.2		0.1	ppm	
Clofentezine	< LOQ	0.2		0.1	ppm		Cyfluthrin	< LOQ	1		0.5	ppm	
Cypermethrin	< LOQ	1		0.5	ppm		Daminozide	< LOQ	1		0.5	ppm	
DDVP (Dichlorvos)	< LOQ	-17		0.1	ppm		Diazinon	< LOQ	0.2		0.1	ppm	
Dimethoate	< LOQ	0.2		0.1	ppm		Ethoprophos	< LOQ	0.2		0.1	ppm	
Etofenprox	< LOQ	0.4		0.1	ppm		Etoxazole	< LOQ	0.2		0.1	ppm	
Fenoxycarb	< LOQ	0.2		0.1	ppm		Fenpyroximate	< LOQ	0.4		0.1	ppm	
Fipronil	< LOQ	0.4		0.1	ppm		Flonicamid	< LOQ	1		0.1	ppm	
Fludioxonil	< LOQ	0.4		0.1	ppm		Hexythiazox	< LOQ	1		0.1	ppm	
Imazalil	< LOQ	0.2		0.1	ppm		Imidacloprid	< LOQ	0.4		0.1	ppm	
Kresoxim-methyl	< LOQ	0.4		0.1	ppm		Malathion	< LOQ	0.2		0.1	ppm	
Metalaxyl	< LOQ	0.2		0.1	ppm		Methiocarb	< LOQ	0.2		0.1	ppm	
Methomyl	< LOQ	0.4		0.1	ppm		Methyl parathion	< LOQ	0.2		0.1	ppm	
MGK-264	< LOQ	0.2		0.1	ppm		Myclobutanil	< LOQ	0.2		0.1	ppm	
Naled	< LOQ	0.5		0.1	ppm		Oxamyl	< LOQ	1		0.1	ppm	
Paclobutrazol	< LOQ	0.4		0.1	ppm		Permethrins	0.1	0.2		0.1	ppm	
Phosmet	< LOQ	0.2		0.1	ppm		Piperonyl butoxide	< LOQ	2		0.9	ppm	
Prallethrin	< LOQ	0.2		0.1	ppm		Propiconazole	< LOQ	0.4		0.1	ppm	
Propoxur	< LOQ	0.2		0.1	ppm		Pyrethrins	< LOQ	1		0.5	ppm	
Pyridaben	< LOQ	0.2		0.1	ppm		Spinosad	< LOQ	0.2		0.1	ppm	
Spiromesifen	< LOQ	0.2		0.1	ppm		Spirotetramat	< LOQ	0.2		0.1	ppm	
Spiroxamine	< LOQ	0.4		0.1	ppm		Tebuconazole	< LOQ	0.4		0.1	ppm	
Thiacloprid	< LOQ	0.2		0.1	ppm		Thiamethoxam	< LOQ	0.2		0.1	ppm	
Trifloxystrobin	< LOQ	0.2		0.1	ppm								

ND - Compound not detected

Results above the Action Level fail state testing requirements and will be highlighted Red.

Eric Wendt Chief Science Officer - 7/28/2022

Page 3 of 14

These results relate only to the sample included on this report. The report may not be reproduced except in full, without the written permission of Green Leaf Lab.

Analysis Method/SOP: 205

D8 SS Distillate

Sample ID: G2G0224-01 Matrix: Hemp Extracts & Test ID: 5021427 Source ID: Date Sampled: 07/20/22 Date Accepted: 07/20/22

Harvest/Prod. Date: 07/17/2022

Residual Solvents

Date/Time Extracted: 07/21/22 12:46

Analyte	Result	Action Level	LOD	LOQ	Units	Notes
1,4-Dioxane	< LOQ	380		50.00	ppm	TIM
2-Butanol	< LOQ	5000		1000	ppm	
2-Ethoxyethanol	< LOQ	160		80.00	ppm	
2-Propanol (IPA)	< LOQ	5000		1000	ppm	
Acetone	< LOQ	5000		1000	ppm	
Acetonitrile	< LOQ	410		50.00	ppm	
Benzene	< LOQ	2		1.000	ppm	
Butanes	< LOQ	5000		1000	ppm	
Cumene	< LOQ	70		35.00	ppm	
Cyclohexane	< LOQ	3880		50.00	ppm	
Dichloromethane	< LOQ	600		50.00	ppm	
Ethyl acetate	< LOQ	5000		1000	ppm	
Ethyl benzene	< LOQ	2170		35.00	ppm	
Ethyl ether	< LOQ	5000		1000	ppm	
Ethylene glycol	< LOQ	620		310.0	ppm	
Ethylene oxide	< LOQ	50		25.00	ppm	
Heptane	< LOQ	5000		1000	ppm	
Hexanes	< LOQ	290		50.00	ppm	
sopropyl acetate	< LOQ	5000		1000	ppm	
Methanol	< LOQ	3000		1000	ppm	
Pentanes	< LOQ	5000		1000	ppm	
Propane	< LOQ	5000		1000	ppm	
Tetrahydrofuran	< LOQ	720		50.00	ppm	
Toluene	< LOQ	890		50.00	ppm	
(ylenes	< LOQ	2170		50.00	ppm	

<LOQ - Results below the Limit of Quantitation

Results above the Action Level fail state testing requirements and will be highlighted Red.

Eric Wendt Chief Science Officer - 7/28/2022

Page 4 of 14

D8 SS Distillate

Sample ID: G2G0224-01Matrix: Hemp Extracts &Test ID: 5021427Source ID:Date Sampled: 07/20/22Date Accepted: 07/20/22

Harvest/Prod. Date: 07/17/2022

Metals Analysis by ICPMS

		Date/Time Extracted: 07/26/22 12:34					
Result	LOD	LOQ	Units				
< LOQ	0.0110	0.0500	ug/g				
< LOQ	0.00100	0.0500	ug/g				
< LOQ	0.00150	0.0500	ug/g				
< LOQ	0.00350	0.0100	ug/g				
e Limit of Quantitatio	n - Compound n	ot detecte	d				
	< LOQ < LOQ < LOQ < LOQ < LOQ	 < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ <li< td=""><td>< LOQ</td> 0.0110 0.0500 < LOQ</li<>	< LOQ	<pre><loq 0.00100="" 0.00150="" 0.0110="" 0.0500="" <loq="" g="" g<="" pre="" ug=""></loq></pre>			

Analysis Subcontracted to Green Leaf Labs - SCCA.

Eric Wendt Chief Science Officer - 7/28/2022

Page 5 of 14

D8 SS Distillate

Sample ID: G2G0224-01Matrix: Hemp Extracts &Test ID: 5021427Source ID:Date Sampled: 07/20/22Date Accepted: 07/20/22

Harvest/Prod. Date: 07/17/2022

Mycotoxins by LCMSMS

	tracted: 07/21/22	2 09:27			Analysis Method/SOP: Mycotoxins
Analyte	Result	LOD	LOQ	Units	
aflatoxin B1	< LOQ	5.00	6.25	ug/kg	
aflatoxin B2	< LOQ	5.00	6.25	ug/kg	
aflatoxin G1	< LOQ	5.00	6.25	ug/kg	
aflatoxin G2	< LOQ	5.00	6.25	ug/kg	
ochratoxin A	< LOQ	5.00	6.25	ug/kg	
Total Aflatoxins	< LOQ	5.00	6.25	ug/kg	

<LOQ - Results below the Limit of Quantitation

Results above the Action Level fail state testing requirements and will be highlighted Red.

Eric Wendt Chief Science Officer - 7/28/2022

Page 6 of 14

Quality Control Potency

Batch: 2230035 - 215-Concentrates

Blank(2230035-B	LK1)						
Analyte	Result	LOQ	Units	%Recovery Limits	Extracted	Analyzed	Notes
THCA	< LOQ	0.0005	%		07/21/22 11:26	07/21/22 16:56	
delta 9-THC	< LOQ	0.0005	%		07/21/22 11:26	07/21/22 16:56	
delta 8-THC	< LOQ	0.0934	%		07/21/22 11:26	07/21/22 16:56	
THCV	< LOQ	0.1052	%		07/21/22 11:26	07/21/22 16:56	
THCVA	< LOQ	0.0392	%		07/21/22 11:26	07/21/22 16:56	
CBD	< LOQ	0.0005	%		07/21/22 11:26	07/21/22 16:56	
CBDA	< LOQ	0.0005	%		07/21/22 11:26	07/21/22 16:56	
CBDV	< LOQ	0.1040	%		07/21/22 11:26	07/21/22 16:56	
CBDVA	< LOQ	0.0341	%		07/21/22 11:26	07/21/22 16:56	
CBN	< LOQ	0.0622	%		07/21/22 11:26	07/21/22 16:56	
CBG	< LOQ	0.0164	%		07/21/22 11:26	07/21/22 16:56	
CBGA	< LOQ	0.0164	%		07/21/22 11:26	07/21/22 16:56	
CBC	< LOQ	0.0186	%		07/21/22 11:26	07/21/22 16:56	

Reference(2230035-SRM1)

Analyte	% Recovery	LOQ	Units	%Recovery Limits	Extracted	Analyzed	Notes
THCA	106	0.0002	%	90-110	07/21/22 11:26	07/21/22 17:18	
delta 9-THC	93.1	0.0002	%	90-110	07/21/22 11:26	07/21/22 17:18	
delta 8-THC	94.3	0.0458	%	90-110	07/21/22 11:26	07/21/22 17:18	
CBD	98.6	0.0002	%	90-110	07/21/22 11:26	07/21/22 17:18	
CBDA	94.3	0.0002	%	90-110	07/21/22 11:26	07/21/22 17:18	

Pesticide Analysis

Batch: 2230030 - 202

Blank(2230030-BL	Blank(2230030-BLK1)										
Analyte	Result	LOQ	Units	%Recovery Limits	Extracted	Analyzed	Notes				
Abamectin	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18					
Acephate	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18					
Acequinocyl	< LOQ	0.5	ppm		07/20/22 15:23	07/21/22 15:18					
Acetamiprid	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18					
Aldicarb	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18					
Azoxystrobin	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18					
Bifenazate	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18					
Bifenthrin	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18					
Boscalid	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:38					
Carbaryl	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18					
Carbofuran	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18					
Chlorantraniliprole	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18					
Chlorfenapyr	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:38					

Eric Wendt Chief Science Officer - 7/28/2022

These results relate only to the sample included on this report. The report may not be reproduced except in full, without the

written permission of Green Leaf Lab.

Pesticide Analysis (Continued)

Batch: 2230030 - 202 (Continued)

Blank(2230030-BLK	(1)						
Analyte	Result	LOQ	Units	%Recovery Limits	Extracted	Analyzed	Notes
Chlorpyrifos	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Clofentezine	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Daminozide	< LOQ	0.5	ppm		07/20/22 15:23	07/21/22 15:18	
Cyfluthrin	< LOQ	0.5	ppm		07/20/22 15:23	07/21/22 15:38	
Diazinon	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Cypermethrin	< LOQ	0.5	ppm		07/20/22 15:23	07/21/22 15:38	
Dimethoate	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Ethoprophos	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Etofenprox	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Etoxazole	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Fenoxycarb	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Fenpyroximate	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Flonicamid	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Hexythiazox	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Imazalil	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Fipronil	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:38	
Imidacloprid	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Fludioxonil	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:38	
Metalaxyl	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Methiocarb	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Methomyl	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Myclobutanil	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Kresoxim-methyl	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:38	
Naled	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Malathion	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:38	
Oxamyl	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Paclobutrazol	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Permethrins	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Methyl parathion	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:38	
MGK-264	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:38	
Phosmet	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Piperonyl butoxide	< LOQ	0.9	ppm		07/20/22 15:23	07/21/22 15:18	
Prallethrin	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Propoxur	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Pyrethrins	< LOQ	0.5	ppm		07/20/22 15:23	07/21/22 15:18	
Pyridaben	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Propiconazole	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:38	
Spinosad	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	

Eric Wendt Chief Science Officer - 7/28/2022

Page 8 of 14

These results relate only to the sample included on this report. The report may not be reproduced except in full, without the written permission of Green Leaf Lab.

Pesticide Analysis (Continued)

Batch: 2230030 - 202 (Continued)

Blank(2230030-B	LK1)						
Analyte	Result	LOQ	Units	%Recovery Limits	Extracted	Analyzed	Notes
Spiromesifen	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Spirotetramat	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Spiroxamine	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Tebuconazole	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Thiacloprid	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Thiamethoxam	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
Trifloxystrobin	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
DDVP (Dichlorvos)	< LOQ	0.1	ppm		07/20/22 15:23	07/21/22 15:18	
LCS(2230030-BS	1)						
Analyte	% Recovery	LOQ	Units	%Recovery Limits	Extracted	Analyzed	Notes
Abamectin	129	0.1	ppm	50-150	07/20/22 15:23	07/21/22 15:41	
Acephate	125	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	BSH
Acequinocyl	93.4	0.5	ppm	40-160	07/20/22 15:23	07/21/22 15:41	
Acetamiprid	112	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Aldicarb	111	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Azoxystrobin	113	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Bifenazate	110	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Bifenthrin	171	0.1	ppm	50-150	07/20/22 15:23	07/21/22 15:41	BSH
Boscalid	80.3	0.1	ppm	60-120	07/20/22 15:23	07/21/22 16:00	
Carbaryl	114	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Carbofuran	111	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Chlorantraniliprole	90.3	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Chlorfenapyr	128	0.1	ppm	60-120	07/20/22 15:23	07/21/22 16:00	BSH
Chlorpyrifos	86.9	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Clofentezine	88.2	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Daminozide	365	0.5	ppm	60-120	07/20/22 15:23	07/21/22 15:41	BSH
Cyfluthrin	101	0.5	ppm	50-150	07/20/22 15:23	07/21/22 16:00	
Diazinon	106	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Cypermethrin	70.7	0.5	ppm	50-150	07/20/22 15:23	07/21/22 16:00	
Dimethoate	113	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Ethoprophos	109	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Etofenprox	111	0.1	ppm	50-150	07/20/22 15:23	07/21/22 15:41	
Etoxazole	109	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Fenoxycarb	114	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Fenpyroximate	112	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Flonicamid	121	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	BSH
Hexythiazox	89.5	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Imazalil	106	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
mazam	100	0.1	РЫП	00-120	01120122 13.23	01121122 10.41	

Eric Wendt Chief Science Officer - 7/28/2022

Page 9 of 14

These results relate only to the sample included on this report. The report may not be reproduced except in full, without the

written permission of Green Leaf Lab.

Pesticide Analysis (Continued)

Batch: 2230030 - 202 (Continued)

г

LCS(2230030-BS1	l)						
Analyte	% Recovery	LOQ	Units	%Recovery Limits	Extracted	Analyzed	Notes
Fipronil	122	0.1	ppm	60-120	07/20/22 15:23	07/21/22 16:00	BSH
Imidacloprid	114	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Fludioxonil	94.4	0.1	ppm	50-150	07/20/22 15:23	07/21/22 16:00	
Metalaxyl	113	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Methiocarb	110	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Methomyl	114	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Myclobutanil	112	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Kresoxim-methyl	99.1	0.1	ppm	60-120	07/20/22 15:23	07/21/22 16:00	
Naled	116	0.1	ppm	50-150	07/20/22 15:23	07/21/22 15:41	
Malathion	128	0.1	ppm	60-120	07/20/22 15:23	07/21/22 16:00	BSH
Oxamyl	114	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Paclobutrazol	111	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Permethrins	136	0.1	ppm	50-150	07/20/22 15:23	07/21/22 15:41	
Methyl parathion	124	0.1	ppm	50-150	07/20/22 15:23	07/21/22 16:00	
MGK-264	123	0.1	ppm	50-150	07/20/22 15:23	07/21/22 16:00	
Phosmet	112	0.1	ppm	50-150	07/20/22 15:23	07/21/22 15:41	
Piperonyl butoxide	102	0.9	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Prallethrin	113	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Propoxur	112	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Pyrethrins	133	0.5	ppm	60-120	07/20/22 15:23	07/21/22 15:41	BSH
Pyridaben	116	0.1	ppm	50-150	07/20/22 15:23	07/21/22 15:41	
Propiconazole	104	0.1	ppm	60-120	07/20/22 15:23	07/21/22 16:00	
Spinosad	118	0.1	ppm	50-150	07/20/22 15:23	07/21/22 15:41	
Spiromesifen	100	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Spirotetramat	117	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Spiroxamine	103	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Tebuconazole	106	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Thiacloprid	114	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Thiamethoxam	116	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
Trifloxystrobin	113	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	
DDVP (Dichlorvos)	120	0.1	ppm	60-120	07/20/22 15:23	07/21/22 15:41	

Solvent Analysis

Batch: 2230040 - 205

Blank(2230040-BLK1)								
Analyte		Result	LOQ	Units	%Recovery Limits	Extracted	Analyzed	Notes
Acetone		< LOQ	1000	ppm		07/21/22 12:46	07/25/22 09:18	
Acetonitrile		< LOQ	50.00	ppm		07/21/22 12:46	07/25/22 09:18	
MANAGEMEN	/	-1-	Eric Wer	ndt				

Chief Science Officer - 7/28/2022

Page 10 of 14

These results relate only to the sample included on this report. The report may not be reproduced except in full, without the written permission of Green Leaf Lab.

Quality Control Solvent Analysis (Continued)

Batch: 2230040 - 205 (Continued)

Blank(2230040-Bl	_K1)						
Analyte	Result	LOQ	Units	%Recovery Limits	Extracted	Analyzed	Notes
Benzene	< LOQ	1.000	ppm		07/21/22 12:46	07/25/22 09:18	
Butanes	< LOQ	1000	ppm		07/21/22 12:46	07/25/22 09:18	
2-Butanol	< LOQ	1000	ppm		07/21/22 12:46	07/25/22 09:18	
Cumene	< LOQ	35.00	ppm		07/21/22 12:46	07/25/22 09:18	
Cyclohexane	< LOQ	50.00	ppm		07/21/22 12:46	07/25/22 09:18	
Dichloromethane	< LOQ	50.00	ppm		07/21/22 12:46	07/25/22 09:18	
1,4-Dioxane	< LOQ	50.00	ppm		07/21/22 12:46	07/25/22 09:18	
2-Ethoxyethanol	< LOQ	80.00	ppm		07/21/22 12:46	07/25/22 09:18	
Ethyl acetate	< LOQ	1000	ppm		07/21/22 12:46	07/25/22 09:18	
Ethyl benzene	< LOQ	35.00	ppm		07/21/22 12:46	07/25/22 09:18	
Ethylene glycol	< LOQ	310.0	ppm		07/21/22 12:46	07/25/22 09:18	
Ethylene oxide	< LOQ	25.00	ppm		07/21/22 12:46	07/25/22 09:18	
Ethyl ether	< LOQ	1000	ppm		07/21/22 12:46	07/25/22 09:18	
Heptane	< LOQ	1000	ppm		07/21/22 12:46	07/25/22 09:18	
Hexanes	< LOQ	50.00	ppm		07/21/22 12:46	07/25/22 09:18	
Isopropyl acetate	< LOQ	1000	ppm		07/21/22 12:46	07/25/22 09:18	
Methanol	< LOQ	1000	ppm		07/21/22 12:46	07/25/22 09:18	
Pentanes	< LOQ	1000	ppm		07/21/22 12:46	07/25/22 09:18	
Propane	< LOQ	1000	ppm		07/21/22 12:46	07/25/22 09:18	
2-Propanol (IPA)	< LOQ	1000	ppm		07/21/22 12:46	07/25/22 09:18	
Tetrahydrofuran	< LOQ	50.00	ppm		07/21/22 12:46	07/25/22 09:18	
Toluene	< LOQ	50.00	ppm		07/21/22 12:46	07/25/22 09:18	
Xylenes	< LOQ	50.00	ppm		07/21/22 12:46	07/25/22 09:18	
LCS(2230040-BS1)						
Analyte	% Recovery	LOQ	Units	%Recovery Limits	Extracted	Analyzed	Notes
Acetone	96.3	1000	ppm	60-120	07/21/22 12:46	07/21/22 23:07	
Acetonitrile	92.0	50.00	ppm	60-120	07/21/22 12:46	07/21/22 23:07	
Benzene	95.5	1.000	ppm	60-120	07/21/22 12:46	07/21/22 23:07	
Butanes	90.2	1000	ppm	60-120	07/21/22 12:46	07/21/22 23:07	
2-Butanol	91.0	1000	ppm	60-120	07/21/22 12:46	07/21/22 23:07	
Cumene	73.7	35.00	ppm	60-120	07/21/22 12:46	07/21/22 23:07	
Cyclohexane	99.3	50.00	ppm	60-120	07/21/22 12:46	07/21/22 23:07	
Dichloromethane	95.7	50.00	ppm	60-120	07/21/22 12:46	07/21/22 23:07	
1,4-Dioxane	90.5	50.00	ppm	60-120	07/21/22 12:46	07/21/22 23:07	
		~~~~	ppm	60-120	07/21/22 12:46	07/21/22 23:07	
2-Ethoxyethanol	70.4	80.00	PPIII				
	70.4 94.7	80.00 1000	ppm	60-120	07/21/22 12:46	07/21/22 23:07	
2-Ethoxyethanol Ethyl acetate Ethyl benzene				60-120 60-120	07/21/22 12:46 07/21/22 12:46	07/21/22 23:07 07/21/22 23:07	



#### Eric Wendt Chief Science Officer - 7/28/2022

Page 11 of 14

These results relate only to the sample included on this report. The report may not be reproduced except in full, without the

written permission of Green Leaf Lab.



# Quality Control Solvent Analysis (Continued)

#### Batch: 2230040 - 205 (Continued)

LCS(2230040-BS	51)						
Analyte	% Recovery	LOQ	Units	%Recovery Limits	Extracted	Analyzed	Notes
Ethylene oxide	95.2	25.00	ppm	60-120	07/21/22 12:46	07/21/22 23:07	
Ethyl ether	98.5	1000	ppm	60-120	07/21/22 12:46	07/21/22 23:07	
Heptane	101	1000	ppm	60-120	07/21/22 12:46	07/21/22 23:07	
Hexanes	100	50.00	ppm	60-120	07/21/22 12:46	07/21/22 23:07	
Isopropyl acetate	95.6	1000	ppm	60-120	07/21/22 12:46	07/21/22 23:07	
Methanol	73.7	1000	ppm	60-120	07/21/22 12:46	07/21/22 23:07	
Pentanes	96.7	1000	ppm	60-120	07/21/22 12:46	07/21/22 23:07	
Propane	74.8	1000	ppm	60-120	07/21/22 12:46	07/21/22 23:07	
2-Propanol (IPA)	90.4	1000	ppm	60-120	07/21/22 12:46	07/21/22 23:07	
Tetrahydrofuran	95.9	50.00	ppm	60-120	07/21/22 12:46	07/21/22 23:07	
Toluene	90.5	50.00	ppm	60-120	07/21/22 12:46	07/21/22 23:07	

## **Mycotoxins**

#### Batch: 2230031 - 202

Blank(2230031-B	BLK1)						
Analyte	Result	LOQ	Units	%Recovery Limits	Extracted	Analyzed	Notes
aflatoxin B1	< LOQ	6.25	ug/kg		07/21/22 09:27	07/21/22 17:33	
aflatoxin B2	< LOQ	6.25	ug/kg		07/21/22 09:27	07/21/22 17:33	
aflatoxin G1	< LOQ	6.25	ug/kg		07/21/22 09:27	07/21/22 17:33	
aflatoxin G2	< LOQ	6.25	ug/kg		07/21/22 09:27	07/21/22 17:33	
ochratoxin A	< LOQ	6.25	ug/kg		07/21/22 09:27	07/21/22 17:33	
LCS(2230031-BS	:1)						
	,,,						
Analyte	% Recovery	LOQ	Units	%Recovery Limits	Extracted	Analyzed	Notes
•	•	<b>LOQ</b> 6.25	Units ug/kg	%Recovery Limits 60-120	Extracted 07/21/22 09:27	Analyzed 07/21/22 17:44	Notes
Analyte	% Recovery			-			Notes
Analyte aflatoxin B1	% Recovery 99.2	6.25	ug/kg	60-120	07/21/22 09:27	07/21/22 17:44	Notes
Analyte aflatoxin B1 aflatoxin B2	% Recovery 99.2 72.3	6.25 6.25	ug/kg ug/kg	60-120 60-120	07/21/22 09:27 07/21/22 09:27	07/21/22 17:44 07/21/22 17:44	Notes





Eric Wendt Chief Science Officer - 7/28/2022




# **Metals Analysis**

#### Batch: 2231013 - Metals

Blank(2231013-E	BLK1)						
Analyte	Result	LOQ	Units	%Recovery Limits	Extracted	Analyzed	Notes
Cadmium	< LOQ	0.0500	ug/g		07/26/22 12:34	07/27/22 18:59	
Lead	< LOQ	0.0500	ug/g		07/26/22 12:34	07/27/22 18:59	
Arsenic	< LOQ	0.0500	ug/g		07/26/22 12:34	07/27/22 18:59	
Mercury	< LOQ	0.0100	ug/g		07/26/22 12:34	07/27/22 18:59	
LCS(2231013-BS	S1)						
LCS(2231013-BS Analyte	S1) % Recovery	LOQ	Units	%Recovery Limits	Extracted	Analyzed	Notes
-	-	<b>LOQ</b> 0.0500	Units ug/g	%Recovery Limits 70-130	Extracted 07/26/22 12:34	<b>Analyzed</b> 07/28/22 18:14	Notes
Analyte	% Recovery			,		,	Notes
Analyte Cadmium	<b>% Recovery</b> 92.9	0.0500	ug/g	70-130	07/26/22 12:34	07/28/22 18:14	Notes





Eric Wendt Chief Science Officer - 7/28/2022



# Notes and Definitions

Regulatory Compliance samples were collected onsite at facility according to ORELAP-SOP-001 and ORELAP-SOP-002 and following Sampling Plan FN117. Quality Control samples were tested as received.

- Non-cannabis matrix related interference or suppression of Internal standard ATM
- BLI Baseline Interference - Cannabinoid peak interference in chromatographic baseline affecting QC recovery .
- Analyte detected in method blank, but not associated samples. BLK
- Blank Spike High Blank Spike recovery above method limit. no detections in samples. BSH
- Blank Spike Low Blank Spike recovery below lower method limit, analyte chromatography reviewed BSL
- manually for all samples. С CBD Interference due to co-elution
- CBD matrix interference on GC Pest chromatography CV1
- CV2 CCV was above acceptance criteria, Non-detect samples are considered acceptable.
- INF
- CCV was below acceptance criteria, sample still exceeds regulatory limit.
- ISH One or more QC falls outside acceptance criteria. Data entered into LIMS for informational purposes only.
- Internal Standard concentration is above acceptance criteria. ISL
- MSH Internal Standard concentration is below acceptance criteria.
- Matrix Spike High Matrix Spike recovery above method limits. MSI
- Matrix Spike Interference Matrix spike source sample contains analyte hit above calibration affecting MSL
- TPP recovery accuracy in Matrix Spike.
- Matrix Spike Low Matrix Spike recovery below lower method limit, analyte chromatography reviewed U manually for all samples.

Internal Standard concentration outside control limit due to matrix interference





Eric Wendt Chief Science Officer - 7/28/2022